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1. Introduction

In recent years, Al researchers have developed a number of systems that
operate in the domain of scientific discovery. For instance, BACON [4] discov-
ers numerical laws (e.g., the ideal gas law) and postulates intrinsic properties
of object classes (e.g., atomic weight). ABACUS (2] is similar to BACON,
but employs an improved search mechanism to find numeric laws in a more
efficient manner. It also improves upon BACON by identifying qualitative pre-
conditions on quantitative laws. GLAUBEK (6] addresses a different aspect of
empirical discovery - the formation of qualitative laws and object taxonomies.

Although each of these systems is successful at its task, each addresses only
part of the ovezall problem of empirical discovery [5]. We are developing an in-
tegrated discovery system (IDS) that deals with a variety of empirical discovery
tasks, including the formation of qualitative and numeric laws. Historically,
qualitative discoveries have tended to lay the foundation for quantitative dis-
coveries, but the latter can in turn lead to higher level qualitative discoveries.
Our system operates in the same basic manner, first finding qualitative laws
and then using them to aid in discovering quantitative relations.

IDS operates in a simulated world of limple physics and chemistry, thus
overcoming one deficiency of previous discovery systems. Previous systems
were provided with data® and could not perform their own experiments. In

* Lenat’s AM (7] is an exception, since it collected its own data and designs
its own experiments. But the mathematical domain of AM allowed methods
not easily extendable to “real world” domains.
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contrast, IDS interacts with the simulated world through a set of effectors and
sensors. Using an effector, the system can actively alter certain attributes of
an object, e.g., by changing its location or heating it. Sensors let the program
inspect certain attributes, such as the temperature and mass of an object. To
carry out an experiment, the system applies effectors to a set of objects and
uses its sensors to observe the manner in which those objects change over time.

In the following section, we introduce the representation that IDS employs
to state qualitative laws. After this, we examine the mechanisms by which the
system discovers qualitative laws and then consider how it uses the resulting
schemas to aid its discovery of numeric laws. We close with some proposals
for extending the system.

2. Representing Qualitative Schemas

Before one can discover qualitative knmvlod‘e about the world, one must
first have some way to represent that knowledge. Let us consider an example
from the domain of hest phenomena. We might begin with a simple view of
what happens when we heat an object, e.g., we expect the temperature of the
object to increase. If we actually heat a solid, we will see that this occurs, but
after some time we may also observe the appearance of a new liquid object. At
this point the temperature increase stops and the mass of the liquid increases
while the mass of the solid decreases. Whea the solid has disappeared, the
temperature of the liquid begins to increase. This process continues uatil a
new gaseous object appears. As before the mass of the gas increases while the

mass of the liquid decreases, the temperature of both objects remains constant !bution/
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during this period. Finally, the liquid vanishes and the temperature of the gas
increases, but so does its pressure.

IDS represents qualitative knowledge of this type in qualitative schemas.
Our representation has been influenced by Forbus’ (3] qualitative process (QP)
theory, with qualitative schemas corresponding to envisionments in QP theory.
The schemas can be viewed as finite state diagrams that describe the behavior
of objects over time. States correspond to intervals of time during which
objects exhibit some coastant behavior. Links specify connections between
states, along with the conditions that must be satisfied to enter a successor
state.

IDS represents each state as a frame with three slots. The description slot
includes one or more classifications of the objects present in the state (e.g., sokid
ot ecid). This slot also includes structural descriptions (e.g, heater A touches
object e, comtainer @ is connected to container }). The guantity-conditions
slot contains statements about attributes of the objects in the state. These
statements are expressed as equalities or inequalities between the quantities
of attributes and kmit-points (see below). The process slot is a list of sero or
move chenges that are occurring during the state. Like Forbus, we express a
chaage in terms of the derivative of the changing attribute. For example, an
increase in mass of object a is denoted Amass(a) > 0.

A state ends oaly if the process reaches a limit-point, such as the melting-

point, or if the agent intervenes, e.g., by turning off the heat. Limit-points are
importaat because they are used in the quantity-conditions, and also because
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Figure 1: Qualitative schema for heating an object '.:\;
they form the basis for quantitative discoveries. Figure 1 presents a graph- E::
ical illustration of a heat schema with the object description, the quantity- "
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3. Inducing Qualitative Schemas

IDS begins with a simple qualitative schema for each of its effectors. For
example, the initial schema of the heat effector consists of two states: s0, with
one object and no active process, and s1, with an object touched by a heater
and with the temperature of the object increasing. This represents IDS’ initial

knowledge of the results of applying the heat effector to an object.

The system carries out experiments to improve its schemas, which can
be refined in several ways. First, if IDS encounters unfamiliar behavior, it
adds a new state to the schema along with a link connecting it to the existing
states. Second, the system may discover that an existing state can follow
another known state; in this case it simply adds a new link connecting the
states. Furthermore, any time new limit-points are found, the system adds

quantity-conditions to the states.

Consider again the heat example and the initial heat schema. IDS experi-
ments by applying the heat effector to a block of ice. At first, the temperature
of the ice increases, satisfying all conditions of state s1. Eventually, a new
object (liquid water) appears; after this point the mass of this new object
increases, while the mass of the ice decreases. IDS’ heat schema does not yet
contain a state for this behavior, so the system creates a new state (s2) and
adds it to the schema. This state has a heater and two objects, b and c. The
process slot describes the qualitative behavior of the system - that the mass of

object b decreases and the mass of object ¢ increases. Since a new limit-point

has been found, quantity-conditions are added to states sf and s2. These con-




ditions specify that the temperature of the object in state s1 is less than some
limit-point C; and that the temperatures of the objects in state s2 are equal
to C).

After the ice disappears, state s] again accurately describes the current
behavioz. When the temperature of the liquid reaches the limit-point C), state
s2 adequately describes the current behavioz, so the system does not change
the schema at this point. When the liquid disappears, IDS encounters unseen
behavior; not only does the temperature of the object increase, but so does its
pressure. Thus the system creates a new state (29) and adds it to the schema.
After further experimentation using different objects, IDS discovers that the
object in s3 is always a gas, while the object in s1 is either a solid or a liquid.
The object description for s2 is found in a similar way. This information is

added, giving the final schema shown in Figure 1.

One can think of this schema-building process as a data-driven search
through the space of possible schemas. In these terms, adding states and
links make schemas more general, while augmenting the state description and

adding quantity-conditions makes them more specific.

4. Discovering Quantitative Laws

Once IDS has formulated a qualitative schema, it uses that knowledge to
constrain the search for numeric laws.** Returning to our heat example, the

system would use the schema in Figure 1 to run different experiments. The

** In addition, schemas provide a context for numeric laws. They describe not
only the applicability of laws but also specify their pre- and post-conditions.
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schema was discovered using a block of ice, 50 one experiment would examine
the effect of varying the initial mass of the ice. Other experiments would vary
the class of object used; for instance, IDS might see if the schema still holds
when the heated object is hydrogen chloride or some other acid.

Most of the data used in discovering numeric laws are not directly ob-

servable, but are gathered in the form of limit-points and state durations.

This information is recorded as attribute-value pairs during the matching of

a schema to an experimental run. Thus, the system records the values of

the limit-point C) for different objects and uses these attribute-value pairs as

I data in its search for numeric laws. Like BACON, the system formulates a

quantitative law upon finding some numeric term with a constant value.

IDS discovers two basically different forms of numeric laws. First it finds

numeric terms that are constant for all objects of a given class. Langley et al.

~ [4] have called such terms intrinsic properties. For example, the system notices
that all instances of the class of ice have the same value for the limit-point
Ci. Thus it stores an intrinsic value for the property C; and associates this
value with the ice class. In fact, this value corresponds to the melting point of
water. IDS also discovers that the zero mass is a critical value for all objects,
since this is the point when object appear and disappear. This can be viewed

as an intrinsic value associated with all objects.

IDS also discovers numeric laws that relate the attributes of different ob-
jects within the same instance of a schema. For example, the system notices

that the masses of the solid, the liquid, and the gas within the same instance
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of the heat schema are always equal. Based on this regularity, it postulates
a conservation law stating that the mass of an object remains constant as it

goes through a phase change.
5. Concluding Remarks

In this paper we have described IDS, a system that integrates the process of
qualitative and quantitative discovery. We have focused on a single example -
involving heat phenomena - to illustrate the acquisition of qualitative schemas
and their role in discovering numeric laws. However, the qualitative schema
representation and IDS’ discovery methods are general enough to cover a wide
range of physical and chemical phenomena. For instance, the system has also
induced a schema that describes simple chemical reactions and another that
describes Black’s law of specific heat. We have also used qualitative schemas
to represent the fluid-flow of two connected containers filled with liquids [3]
and the osmosis of two liquids with different concentrations [8], though IDS

has not yet generated this knowledge itself.

We are extending the discovery system on several fronts. Our next step is
to incorporate a more robust search mechanism, such as those used in BACON
and ABACUS, to support the discovery of more complex numeric laws. In ad-
dition, we must currently supply the system with a concept hierarchy, and are
actively extending the system to construct taxonomies on its own initiative. In
forming these taxonomies, the next version of IDS will use symbolic attributes,
numeric attributes, and information derived from qualitative schemas. As the

capabilities of IDS grow, so will the need for an improved agenda mechanism

8
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(6] that directs not only the discoverj process but also the design of experi-
ments. Even though the IDS project is still in an early phase, it has already
led to promising results that have improved our understanding of the complex

process of scientific discovery.
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